|
Imaging spectroscopy (also hyperspectral or spectral imaging or chemical imaging) is similar to color photography, but each pixel acquires many bands of light intensity data from the spectrum, instead of just the three bands of the RGB color model. More precisely, it is the simultaneous acquisition of spatially coregistered images in many spectrally contiguous bands. Some spectral images contain only a few image planes of a spectral data cube, while others are better thought of as full spectra at every location in the image. For example, solar physicists use the spectroheliograph to make images of the Sun built up by scanning the slit of a spectrograph, to study the behavior of surface features on the Sun; such a spectroheliogram may have a spectral resolution of over 100,000 () and be used to measure local motion (via the Doppler shift) and even the magnetic field (via the Zeeman splitting or Hanle effect) at each location in the image plane. The multispectral images collected by the Opportunity rover, in contrast, have only four wavelength bands and hence are only a little more than 3-color images. To be scientifically useful, such measurement should be done using an internationally recognized system of units. One application is spectral geophysical imaging, which allows quantitative and qualitative characterization of the surface and of the atmosphere, using radiometric measurements. These measurements can then be used for unambiguous direct and indirect identification of surface materials and atmospheric trace gases, the measurement of their relative concentrations, subsequently the assignment of the proportional contribution of mixed pixel signals (e.g., the spectral unmixing problem), the derivation of their spatial distribution (mapping problem), and finally their study over time (multi-temporal analysis). The Moon Mineralogy Mapper on Chandrayaan-1 was a geophysical imaging spectrometer. == Background == In 1704, Sir Isaac Newton demonstrated that white light could be split up into component colours. The subsequent history of spectroscopy led to precise measurements and provided the empirical foundations for atomic and molecular physics (Born & Wolf, 1999). Significant achievements in imaging spectroscopy are attributed to airborne instruments, particularly arising in the early 1980s and 1990s (Goetz et al., 1985; Vane et al., 1984). However, it was not until 1999 that the first imaging spectrometer was launched in space (the NASA Moderate-resolution Imaging Spectroradiometer, or MODIS). Terminology and definitions evolve over time. At one time, >10 spectral bands sufficed to justify the term "imaging spectrometer" but presently the term is seldom defined by a total minimum number of spectral bands, rather by a contiguous (or redundant) statement of spectral bands. The term hyperspectral imaging is sometimes used interchangeably with imaging spectroscopy. Due to its heavy use in military related applications, the civil world has established a slight preference for using the term imaging spectroscopy. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「imaging spectroscopy」の詳細全文を読む スポンサード リンク
|